Theory of estimation, minimum variance and unbiased estimators, maximum likelihood theory, Bayesian estimation, prior and posterior distributions, confidence intervals for general estimators, standard estimators and distributions such as the Student-t and F-distribution from a more advanced viewpoint, hypothesis testing, the Neymann-Pearson Lemma (about best possible tests), linear models, and other topics as time permits. Prerequisite: CSE 131 or 200, Math/SDS 3200 and Math/SDS 493.
Course Attributes: FA NSM; AS NSM